National 5 Mathematics

Volume - Solutions

Marks are indicated in brackets after each question number

2014 Paper 2 Question 7, (5)

Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi \times 4^{2} \times 15=251.3 \mathrm{~cm}^{3} .
$$

Volume of hemisphere $=\frac{4}{3} \pi r^{3} \div 2$

$$
\begin{aligned}
& =\frac{4}{3} \pi \times 3.7^{3} \div 2 \\
& =106.1 \mathrm{~cm}^{3} .
\end{aligned}
$$

Volume of glass part $=251.3-106.1=145.2 \mathrm{~cm}^{3}$.

2015 Paper 2 Question 6, (3) (2)

a) Volume of Sphere $=\frac{4}{3} \pi r^{3}$

Volume of the Earth $=\frac{4}{3} \pi \times 6,400^{3}$

$$
\begin{aligned}
& =1,098,066,219,443 \\
& =1,100,000,000,000 \\
& =1.1 \times 10^{12} .
\end{aligned}
$$

b) $\frac{1.1 \times 10^{12}}{2.2 \times 10^{10}}=0.5 \times 10^{2}=0.5 \times 100=50$

So, 50 times

2016 Paper 2 Question 7, (5)

Volume of large cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 16^{2} \times 24 \\
& =6,400 \mathrm{~cm}^{3} \text { to } 2 \text { s.f. }
\end{aligned}
$$

Volume of small cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 9^{2} \times 13.5 \\
& =1,100 \mathrm{~cm}^{3} \text { to } 2 \text { s.f. }
\end{aligned}
$$

Volume of carton $=6,400-1,100=5,300 \mathrm{~cm}^{3}$ to 2 s.f.

2017 Paper 2 Question 6, (5)

Volume of outer sphere $=\frac{4}{3} \times \pi \times 12^{3}=7,240 \mathrm{~mm}^{3}$.
Volume of inner sphere $=\frac{4}{3} \times \pi \times 9^{3}=3,050 \mathrm{~mm}^{3}$.
Volume of coating $=7,240-3,050=4,190 \mathrm{~mm}^{3}$.

2018 Paper 1 Question 17, (3)

Volume $=\frac{1}{3} \mathrm{Ah}$
$138=\frac{1}{3} \times 6^{2} \times h$
$138=12 h$
$h=\frac{138}{12}=\frac{69}{6}=11.5$
$h=11.5 \mathrm{~cm}$

2018 Paper 2 Question 7, (3)

$$
\begin{aligned}
v & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times \pi \times 3.2^{2} \\
& =137.2582 \\
& =140 \mathrm{~cm}^{3}
\end{aligned}
$$

2018 Paper 2 Question 11, (3)

$$
\begin{aligned}
& 85 \%=9.3 \times 10^{11} \\
& 1 \%=\left(9.3 \times 10^{11}\right) \div 85 \\
& 100 \%=\left[\left(9.3 \times 10^{11}\right) \div 85\right] \times 100 \\
& \\
& =1,094,117,647,058=1.09 \times 10^{2}
\end{aligned}
$$

2019 Paper 2 Question 8, (5)

Volume of hemi-sphere $=\frac{1}{2} x \frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{1}{2} x \frac{4}{3} x \pi x\left(12^{3}\right) \\
& =3,619.11 \mathrm{~cm}^{3} .
\end{aligned}
$$

Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi x\left(12^{2}\right) x(70-12) \\
& =26,238.58 \mathrm{~cm}^{3} .
\end{aligned}
$$

Volume of bollard $=3,619.11+26,238.58=29,857.69 \mathrm{~cm}^{3}$.

2022 Paper 1 Question 3, (2)

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(10^{2}\right)(60) \\
& =\frac{1}{3} \pi(100)(60) \\
& =2000 \pi \\
& =2000 \times 3.14 \\
& =6,280 \mathrm{~cm}^{3}
\end{aligned}
$$

2022 Paper 2 Question 3, (3)

Volume of Sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times 0.2^{3} \\
& =0.0335 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of Cuboid } & =l \times b \times h \\
& =0.48 \times 0.48 \times 2 \\
& =0.4608 \mathrm{~m}^{3}
\end{aligned}
$$

Total volume of concrete needed $=0.0335+0.4608=0.4943 \mathrm{~m}^{3}$

2023 Paper 2 Question 9, (4)

The block is a pyramid with a smaller pyramid removed from the top.

Volume of large pyramid $=\frac{1}{3} \times 90^{2} \times 108$

$$
=291,600 \mathrm{~cm}^{3}
$$

Volume of small pyramid $=\frac{1}{3} \times 40^{2} \times 48$

$$
=25,600 \mathrm{~cm}^{3}
$$

Volume of block $=291,600-25,600=266,000 \mathrm{~cm}^{3}$

