National 5 Mathematics

Trigonometry - Solutions

Marks are indicated in brackets after each question number

2014 Paper 1 Question 10, (2)

The graph has been stretched vertically by a factor of 3 so $a=3$.
The graph has been moved to the right by 40° so $b=-40$.

2014 Paper 2 Question 12, (3)

$11 \cos x^{\circ}-2=3$
$11 \cos x^{\circ}=5$
$\cos x^{\circ}=\frac{5}{11}$
$x=\cos ^{-1}\left(\frac{5}{11}\right)=63^{\circ}$
Second solution is $360-63=297^{\circ}$.

2015 Paper 1 Question 6, (2)

Since the amplitude is 4, $a=4$.
Since there are 3 copies of the Sine graph is $0 \leq x \leq 360^{\circ}, b=3$.

2015 Paper 1 Question 7, (1) (1) (1)

a) i) $a=-2$
ii) $b=-4$
b) $x=-4$

2015 Paper 1 Question 9, (2)

$\cos 90^{\circ}=0$
$\cos 100^{\circ}<0$ from inspection of the graph.
$\cos 300^{\circ}>0$ from inspection of the graph.
So, $\cos 100^{\circ}<\cos 90^{\circ}<\cos 300^{\circ}$.

2016 Paper 1 Question 11, (2)

$\tan ^{2} x \cos ^{2} x$
Use $\tan x=\frac{\sin x}{\cos x}$ to give
$\left(\frac{\sin x}{\cos x}\right)^{2} \cos ^{2} x$
$=\frac{\sin ^{2} x}{\cos ^{2} x} \cdot \cos ^{2} x$
$=\sin ^{2} x$

2016 Paper 2 Question 14, (3)

$2 \tan x+5=-4$
$2 \tan x=-9$
$\tan x=-4.5$
$x=\tan ^{-1}(-4.5)$
$x=77^{\circ}$

Using CAST we have
$x=180-77=103^{\circ}$
$x=360-77=283^{\circ}$

2017 Paper 2 Question 15, (1) (1) (4)

a) $h=40+23 \cos x$

When $x=60^{\circ}$

$$
\begin{aligned}
h & =40+23 \cos 60^{\circ} \\
& =51.5 \mathrm{~m} .
\end{aligned}
$$

b) Minimum height occurs where $x=180^{\circ}$

$$
\begin{aligned}
h & =40+23 \cos 180^{\circ} \\
& =17 \mathrm{~m} .
\end{aligned}
$$

c) Let $h=61$ to give

$$
\begin{aligned}
& 61=40+23 \cos x \\
& \cos x=\frac{21}{23}
\end{aligned}
$$

$$
\begin{aligned}
& x=\cos ^{-1}\left(\frac{21}{23}\right)=24^{\circ} \\
& x=360-24=336^{\circ}
\end{aligned}
$$

2018 Paper 1 Question 6, (2)

$$
\begin{aligned}
& y=5 \cos 4 x \\
& a=5, b=4
\end{aligned}
$$

2018 Paper 1 Question 10, (3)

$$
\begin{aligned}
z^{2} & =x^{2}+y^{2}-2 x y \cos Z \\
& =8^{2}+10^{2}-2(8)(10)\left(\frac{1}{8}\right) \\
& =164-20 \\
& =144 \\
z & =12
\end{aligned}
$$

So, $X Y=12 \mathrm{~cm}$.

2018 Paper 1 Question 12, (1)

Sketch the graph of $y=\cos x$
Mark on a horizontal line through 0.5.
The line passes through the graph where $x=60$.
From the symmetry of the graph, $\cos 240^{\circ}=-0.5$.
Or use a CAST diagram.

2018 Paper 1 Question 18, (2)

$\sin x \cos x \tan x$
Substitute $\tan x=\frac{\sin x}{\cos x}$ to give
$\sin x \cos x \frac{\sin x}{\cos x}$
$=\sin x \sin x$
$=\sin ^{2} x$

2018 Paper 2 Question 8, (3)

$$
7 \sin x+2=3
$$

$$
\sin x=\frac{1}{7}
$$

$$
x=\sin ^{-1}\left(\frac{1}{7}\right)=8.2^{\circ}
$$

From CAST diagram

$x=180-8.2=171.8^{\circ}$.

2018 Paper 2 Question 17, (5)

$$
\begin{aligned}
\text { Area of Triangle } & =\frac{1}{2}(38)(55) \sin 75 \\
& =1009.39 \mathrm{~cm}^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of Sector } & =\frac{75}{360} \times \pi \times 60 \\
& =39.27 \mathrm{~cm}^{2}
\end{aligned}
$$

Shaded Area $=1009.39-39.27$

$$
=970.12 \mathrm{~cm}^{2} .
$$

2019 Paper 1 Question 13, (2)

$x-$ co-ordinate of $A=180-45=135$.
y - co-ordinate of $A=-1 \times 3=-3$.
Co-ordinates of $A=(135,-3)$.

2019 Paper 2 Question 7, (3)

The smallest angle is at vertex Z.
Using the Cosine Rule gives
$\operatorname{Cos} Z=\frac{8.5^{2}+7.2^{2}-6.3^{2}}{2(8.5)(7.2)}$

$$
=\frac{84.4}{122.4}
$$

$$
Z=\cos ^{-1}\left(\frac{84.4}{122.4}\right)
$$

$$
=46.4^{\circ}
$$

2019 Paper 2 Question 14, (3)

$5 \cos x+2=1$
$5 \cos x=-1$

$$
\cos x=-\frac{1}{5}
$$

$$
\cos x=-0.2
$$

$\cos ^{-1}(0.2)=78^{\circ}$

From CAST solutions lie in quadrants $2 \& 3$, giving
$x=180-78=102^{\circ}$.
$x=180+78=258^{\circ}$.

2019 Paper 2 Question 17, (2)

$$
\begin{aligned}
(\sin x+\cos x)^{2} & =(\sin x+\cos x)(\sin x+\cos x) \\
& =\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x \\
& =\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x \\
& {\left[\sin ^{2} x+\cos ^{2} x=1 \text { from Trig Identities }\right] } \\
& =2 \sin x \cos x+1
\end{aligned}
$$

2022 Paper 1 Question 8, (1) (1)

a) $a=3$
b) $b=8$

2022 Paper 2 Question 9, (3)

$3 \sin x+4=6$
$3 \sin x=2$
$\sin x=\frac{2}{3}$
$\sin ^{-1}\left(\frac{2}{3}\right)=41.8^{\circ}$
From CAST $x=41.8^{\circ}$ and $x=180^{\circ}-41.8^{\circ}=138.2^{\circ}$

2022 Paper 2 Question 13, (2)
$\frac{\sin x+2 \cos x}{\cos x}$
$=\frac{\sin x}{\cos x}+\frac{2 \cos x}{\cos x}$
$=\tan x+2$

2023 Paper 1 Question 11, (1)

Either use the CAST diagram or the symmetry of the Sine Graph to answer this question.
$\sin 330^{\circ}=-\sin 30^{\circ}=-0.5$

2023 Paper 1 Question 13, (1) (1)

a) $a=210$
b) $b=1$

2023 Paper 2 Question 11, (4)

$h=20 \cos x+147$
Substitute $h=150$ to give
$150=20 \cos x+147$
$20 \cos x=3$
$\cos x=\frac{3}{20}$
$\cos ^{-1}\left(\frac{3}{20}\right)=81.4^{\circ}$
From CAST $x=81.4^{\circ}$ and $x=360-81.4=278.6^{\circ}$

2023 Paper 2 Question 13, (2)

$$
\begin{aligned}
2 \sin ^{2} x+2 \cos ^{2} x & =2\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =2(1) \\
& =2
\end{aligned}
$$

