National 5 Mathematics

Straight Lines - Solutions

Marks are indicated in brackets after each question number

2014 Paper 1 Question 6, (3) (1)

a)
$$A = (5,200), B = (25,500)$$

$$m_{AB} = \frac{500 - 200}{25 - 5} = 15$$

Using y - b = m(x - a) with (5, 200) gives

$$y - 200 = 15(x - 5)$$

$$y - 200 = 15x - 75$$

$$y = 15x + 125$$

$$C = 15F + 125$$

b)
$$C = 15F + 125$$

Substituting F = 40 gives

$$C = (15 x 40) + 125$$

$$= 725$$

2014 Paper 1 Question 11, (2) (2)

a)
$$4x + 3y = 12$$

$$3y = -4x + 12$$

$$y = -\frac{4}{3}x + 4$$

So, the gradient is $-\frac{4}{3}$.

b) On the x-axis y = 0, so let y = 0 to give

$$0 = -\frac{4}{3}x + 4$$

$$x = 3$$

Giving, the point (3,0).

2015 Paper 1 Question 8, (3)

Let
$$A = (-2, 5), B = (3, 15)$$

$$m_{AB} = \frac{15 - 5}{3 - (-2)} = 2$$

Using y - b = m(x - a) with (3, 15) we have

$$y - 15 = 2(x - 3)$$

$$y - 15 = 2x - 6$$

$$y = 2x + 9$$

2016 Paper 1 Question 5, (3) (1)

a)
$$D = (3,100), E = (15,340)$$

$$m_{DE} = \frac{340 - 100}{15 - 3}$$
$$= \frac{240}{12}$$

$$= 20$$

Using y - b = m(x - a) with (3, 100) gives

$$y - 100 = 20(x - 3)$$

$$y - 100 = 20x - 60$$

$$y = 20x + 40$$

$$W = 20A + 40$$

b)
$$W = 20A + 40$$

$$1 \text{ year} = 12 \text{ months}$$

$$W = (20 x 12) + 40$$

$$= 280 kg.$$

2017 Paper 1 Question 6, (3)

$$m_{AB} = \frac{6 - (-2)}{-1 - 3}$$

$$= -2$$

Using y - b = m(x - a) with (3, -2) gives

$$y - (-2) = -2(x - 3)$$

$$y + 2 = -2x + 6$$

$$y = -2x + 4$$

2017 Paper 2 Question 11, (2)

$$3x - 5y - 10 = 0$$

$$3x - 10 = 5y$$

$$5y = 3x - 10$$

$$y = \frac{3}{5}x - 2$$

So, the gradient of the line is $\frac{3}{5}$.

2018 Paper 1 Question 7, (3) (1)

a)
$$A = (8, 14), B = (12, 20)$$

Gradient =
$$\frac{20-14}{12-8} = \frac{6}{4} = \frac{3}{2}$$

Write y = mx + c using P and d to give

$$P = md + c$$

$$P = \frac{3}{2}d + c$$

Substitute (8, 14) to give

$$14 = \frac{3}{2} \cdot 8 + c$$

$$14 = 12 + c$$

$$c = 2$$

$$P = \frac{3}{2}d + 2$$

b) Let d = 5 to give

$$P = \frac{3}{2}(5) + 2$$

$$=\frac{15}{2}+2$$

$$= 7.5 + 2$$

So, £ 9.50.

2018 Paper 2 Question 14, (2)

$$2x - 5y = 20$$

For
$$y$$
 – intercept, let $x = 0$

$$0 - 5y = 20$$

$$-5y = 20$$

$$y = -4$$

$$(0, -4)$$

2019 Paper 1 Question 6, (3) (1)

a) Choose two points that lie on the line of best fit, (1.5, 14), (3.5, 8)

Gradient =
$$\frac{14 - 8}{1.5 - 3.5}$$
$$= \frac{6}{-2}$$
$$= -3$$

Using
$$y - b = m(x - a)$$
 with (1.5, 14) gives

$$y - 14 = -3(x - 1.5)$$

$$y - 14 = -3x + 4.5$$

$$y = -3x + 18.5$$

$$F = -3E + 18.5$$

b) Substituting E = 1.1 gives

$$F = (-3 \times 1.1) + 18.5$$

$$= -3.3 + 18.5$$

$$= 15.2$$

2019 Paper 2 Question 13, (3)

Gradient =
$$\frac{9-4p^2}{6-4p}$$

= $\frac{(3-2p)(3+2p)}{2(3-2p)} = \frac{3+2p}{2}$

2022 Paper 1 Question 6, (3)

$$m = \frac{7 - (-1)}{-5 - (-3)} = \frac{8}{-2} = -4$$

Using
$$y - b = m(x - a)$$
 with $(-3, -1)$ gives

$$y - (-1) = -4(x - (-3))$$

$$y + 1 = -4(x + 3)$$

$$y + 1 = -4x - 12$$

$$y = -4x - 13$$

2023 Paper 1 Question 7, (3) (1)

a) The points given on the line are (5, 20000) and (25, 50000).

$$m = \frac{50000 - 20000}{25 - 5}$$

$$m = \frac{30000}{20}$$

$$m = \frac{3000}{2} = 1500$$

Using
$$y - b = m(x - a)$$
 with (5, 20000) gives

$$y - 20000 = 1500(x - 5)$$

$$y - 20000 = 1500x - 7500$$

$$y = 1500x + 125000$$

Rewrite with P and T to give

$$P = 1500T + 125000$$

b) Substitute T = 8 to give

$$P = 1500(8) + 125000$$

$$P = 24,500$$