National 5 Mathematics

Similar Figures - Solutions

Marks are indicated in brackets after each question number

2014 Paper 2 Question 5, (3)

Linear scale factor $=\frac{24}{15}$
Volume scale factor $=\left(\frac{24}{15}\right)^{3}$
Volume of the larger jar $=750 \times\left(\frac{24}{15}\right)^{3}=3,072 \mathrm{~cm}^{3}$.

2015 Paper 2 Question 9, (4)

Linear Scale Factor $=\frac{30}{24}=1.25$.
Area Scale Factor $=(1.25)^{2}=1.5625$.
Area of $P S R=1.5625 \times 400=625 \mathrm{~cm}^{2}$.
Area of PSTQ $=625-400=225 \mathrm{~cm}^{2}$.

2016 Paper 2 Question 11, (3)

Linear scale factor $=\frac{60}{100}=0.6$.
Area scale factor $=0.6^{2}=0.36$.
Cost $=£ 13.75 \times 0.36=£ 4.95$.

2017 Paper 1 Question 15, (3)

Linear scale factor $=\frac{5}{7}$
Set up as a 'reduction' to give
$x=\frac{5}{7} \cdot(x+2.6)$
$7 x=5(x+2.6)$
$7 x=5 x+13$
$2 x=13$
$x=6.5 \mathrm{~cm}$.

2018 Paper 2 Question 18, (3) (2)

a) Linear Scale Factor $=\frac{24}{16}=1.5$.

Volume Scale Factor $=1.5^{3}=3.375$.

$$
\frac{1125}{576}=1.96
$$

Since $1.96 \neq 3.375$ the two cartons are not mathematically similar.
b) Volume Scale Factor $=\frac{1500}{576}=2.6$

$$
\begin{aligned}
& 2.6=\left(\frac{d}{16}\right)^{3} \\
& 2.6=\frac{d^{3}}{16^{3}} \\
& 2.6 \times 16^{3}=d^{3} \\
& d^{3}=10,649.6 \\
& d=\sqrt[3]{10,649.6} \\
& d=22 \mathrm{~cm} .
\end{aligned}
$$

2019 Paper 2 Question 12, (3)

a) Linear Scale Factor $=\frac{30}{50}$

$$
\begin{aligned}
& \text { Area Scale Factor }=\left(\frac{30}{50}\right)^{2}=0.36 \\
& \text { Area }=2,750 \times 0.36=990 \mathrm{~cm}^{2}
\end{aligned}
$$

b) Area $=\frac{\text { angle }}{360} x \pi r^{2}$

Let the angle $A C B=x$
$2,750=\frac{x}{360} \times \pi \times 50^{2}$
$2,750=\frac{2,500 \pi x}{360}$
$x=\frac{2,750 \times 360}{2,500 \pi}$
$x=126.1^{\circ}$.

