National 5 Mathematics

Quadratic Equations - Solutions

Marks are indicated in brackets after each question number

2016 Paper 1 Question 6, (2)

$f(x)=7 x^{2}+5 x-1$
$a=7, b=5, c=-1$
$b^{2}-4 a c=25-4 \times 7 \times(-1)=53$
Since $b^{2}-4 a c>0$ there are two roots.

2016 Paper 1 Question 12, (1) (3) (3)
a) Area of rectangle $=(2 x+1)(x+8)$
b) Area of triangle $=\frac{1}{2}(3 x)(2(x+5))$

$$
=3 x(x+5)
$$

Area of rectangle $=$ area of triangle

$$
(2 x+1)(x+8)=3 x(x+5)
$$

$$
2 x^{2}+17 x+8=3 x^{2}+15 x
$$

Simplifying gives $x^{2}-2 x-8=0$
c) $x^{2}-2 x-8=0$
$(x-4)(x+2)=0$
$x=-2, x=4$
Since x is a length it cannot be negative, so $x=4$.
Length $=8+4=12 \mathrm{~cm}$.
Breadth $=(2 x 4)+1=9 \mathrm{~cm}$.

2017 Paper 2 Question 4, (3)
$2 x^{2}+5 x-4=0$
$a=2, b=5, c=-4$
$x=\frac{-5 \pm \sqrt{5^{2}-4 \times 2 \times(-4)}}{2 \times 2}$
$x=\frac{-5 \pm \sqrt{25+32}}{4}$
$x=\frac{-5+\sqrt{57}}{4}=0.6$

$$
x=\frac{-5-\sqrt{57}}{4}=-3.1
$$

2018 Paper 1 Question 5, (2)
$x^{2}-11 x+24=0$
$(x-8)(x-3)=0$
$x-8=0$ and $x-3=0$
$x=8, x=3$

2018 Paper 1 Question 8, (2)

$f(x)=2 x^{2}+4 x+5$
$a=2, b=4, c=5$
$b^{2}-4 a c=4^{2}-4(2)(5)$

$$
=16-40
$$

$$
=-24
$$

So, no real roots.

2018 Paper 1 Question 19, (4)

b) $x^{2}-6 x-81=0$

$$
\begin{aligned}
(x-3)^{2}-90 & =0 \\
(x-3)^{2} & =90 \\
x-3 & = \pm \sqrt{90} \\
x & =3 \pm 3 \sqrt{10}
\end{aligned}
$$

2019 Paper 1 Question 15, (1) (4)

a) $h=12 t-5 t^{2}$

Substitute $t=2$ to give

$$
\begin{aligned}
h & =(12 \times 2)-5\left(2^{2}\right) \\
& =24-20 \\
& =4
\end{aligned}
$$

4 metres.
b) Substitute $h=-17$ to give

$$
\begin{aligned}
& -17=12 t-5 t^{2} \\
& 5 t^{2}-12 t-17=0 \\
& (5 t-17)(t+1)=0
\end{aligned}
$$

$5 t-17=0$
$t=\frac{17}{5}$
$t=3.4$
$t+1=0$
$t=-1$
Since t represents time this solution can be discarded.

So, the ball will hit the sea after 3.4 seconds.

2019 Paper 2 Question 6, (3)

$3 x^{2}+9 x-2=0$
$a=3, b=9, c=-2$

$$
\begin{aligned}
x=\frac{-9 \pm \sqrt{9^{2}-4(3)(-2)}}{2(3)} & =\frac{-9 \pm \sqrt{81+24}}{6} \\
& =\frac{-9 \pm \sqrt{105}}{6}
\end{aligned}
$$

$x=\frac{-9+\sqrt{105}}{6}=0.2$

$$
x=\frac{-9-\sqrt{105}}{6}=-3.2
$$

2022 Paper 1 Question 15, (1) (4)

a) Area of triangle $=\frac{1}{2} x$ base x height

$$
\begin{aligned}
& =\frac{1}{2}(3)(x+12) \\
& =\frac{3}{2}(x+12)
\end{aligned}
$$

b) Area of rectangle = base x height

$$
\begin{aligned}
& =(8-x) x 6 \\
& =6(8-x)
\end{aligned}
$$

Area of triangle $=$ Area of rectangle

$$
\begin{aligned}
& \frac{3}{2}(x+12)=6(8-x) \\
& \frac{3}{2}(x+12)=48-6 x \\
& 3(x+12)=96-12 x \\
& 3 x+36=96-12 x \\
& 15 x=60 \\
& x=4
\end{aligned}
$$

2022 Paper 2 Question 7, (4)

$4 x^{2}+2 x-7=0$
$a=4, b=2, c=-7$
$x=\frac{-2 \pm \sqrt{2^{2}-4(4)(-7)}}{2(4)}$
$x=\frac{-2 \pm \sqrt{116}}{8}$
$x=\frac{-2+\sqrt{116}}{8}$ and $x=\frac{-2-\sqrt{116}}{8}$
$x=1.1$ and $x=-1.6$ to 2 significant figures.

2023 Paper 1 Question 5, (2)

$$
f(x)=4 x^{2}+6 x-1
$$

$$
a=4, b=6, c=-1
$$

$$
b^{2}-4 a c=6^{2}-4(4)(-1)
$$

$$
=36+16
$$

$$
=42
$$

Since $b^{2}-4 a c>0$ there are two real and distinct roots.

2023 Paper 2 Question 14, (2) (4)

a) Volume $=l x b x h$

$$
\begin{aligned}
& =(x+7)(x)(2) \\
& =2 x(x+7) \\
& =2 x^{2}+14 x
\end{aligned}
$$

But since the volume is 45 we have

$$
\begin{aligned}
& 2 x^{2}+14 x=45 \\
& 2 x^{2}+14 x-45=0
\end{aligned}
$$

b) We need to solve $2 x^{2}+14 x-45=0$

Since this doesn't factorise we have to use the quadratic formula $a=2, b=14, c=-45$
$x=\frac{-14 \pm \sqrt{14^{2}-4(2)(-45)}}{2(2)}$
$x=\frac{-14 \pm \sqrt{556}}{4}$
$x=\frac{-14+\sqrt{556}}{4}$ and $x=\frac{-14-\sqrt{556}}{4}$
$x=2.4$ and $x=-9.4$
But since x is a length it cannot be negative, so $x=2.4$.
So, the breadth is 2.4 cm .

