\sim

National 5 Mathematics

Pythagoras' Theorem – Solutions

Marks are indicated in brackets after each question number

2014 Paper 2 Question 6, (4)

Since Lowtown is due west of Midtown then Hightown can only be directly north of Lowtown if the triangle is right-angled. Let H = Hightown, L = Lowtown, M= Midtown Then $(LH)^2 + (LM)^2 = 85^2 + 75^2 = 12,850$ $(HM)^2 = 110^2 = 12,100$ Since $(LH)^2 + (LM)^2 \neq (HM)^2$ the triangle is not right-angled. Therefore, Hightown is not directly north of Lowtown.

2015 Paper 2 Question 12, (4)

Construct a right triangle from the midpoint of ML with 0 & M.

Using Pythagoras gives $1.2^2 = 0.9^2 + h^2$

Solving gives h = 0.79 m

So, depth of milk = 0.79 + radius = 0.79 + 1.2 = 2.78 m.

2016 Paper 1 Question 7, (4)

a) B = (8, 4, 0) by inspection of the graph.

b) Create a right-angled triangle in the base.

Using Pythagoras, we have

$$h = \sqrt{2^2 + 3^2} = \sqrt{13}$$
$$(AV)^2 = 6^2 + (\sqrt{13})^2$$
$$= 49$$
$$AV = 7$$

2016 Paper 2 Question 16, (4)

Using Pythagoras gives $DE = \sqrt{4^2 - 3^2} = \sqrt{7}$ Using the Sine Rule on ADE gives $\frac{\sin A}{a} = \frac{\sin E}{e}$ $\frac{\sin A}{\sqrt{7}} = \frac{\sin 90}{4}$ $\sin A = \frac{\sqrt{7} \sin 90}{4}$ $= 0.661 \dots$

$$A = sin^{-1}(0.661...)$$

= 41°

Using the Cosine Rule on ABC gives $a^2 = b^2 + c^2 - 2bc \cos A$ $= 6^2 + 10^2 - 2 x 6 x 10 x \cos 41^\circ$ = 45.4 a = 6.7So, $BC = 6.7 \ cm$.

2017 Paper 2 Question 7, (3)

The hypotenuse of the larger triangle is 22 cm. The short sides have length 8 cm and 19 cm. $8^2 + 19^2 = 425$ $22^2 = 484$ Since $425 \neq 484$ the triangle is not right angled by the converse of Pythagoras.

2018 Paper 2 Question 12, (4)

Let M be the mid-point of AB. Construct a right-angled triangle OAM. Using Pythagoras, $13^2 - 10^2 = 169 - 100 = 69$. $\sqrt{69} = 8.3$ Width = Radius + 8.3 = 13 + 8.3 = 21.3 cm.

2019 Paper 2 Question 11, (4)

The length of B to C is given by 1500 - 600 - 650 = 250 m. $650^2 = 422,500$ $600^2 + 250^2 = 422,500$

Since $600^2 + 250^2 = 650^2$ a triangle with short sides 600 & 250 and long side 650 is a right-angled triangle by the Converse of Pythagoras' Theorem.

So, *ABC* is a right-angled triangle, meaning that B is due east of A since C is due north of B.

2019 Paper 2 Question 18, (4)

Create a right angled triangle TSB.

Since TS & SB are the radius of the circle they have length 7.5 *cm*.

By Pythagoras, $TB = \sqrt{7.5^2 + 7.5^2}$ = 10.6 cm.

TB is the radius of the larger circle, so TD also has length 10.6 cm.

So, height = 10.6 + 15 = 25.6 *cm*.

2022 Paper 2 Question 8, (4)

Set up a right angled triangle with long side = 2.9 m and short side = 2 m.

By Pythagoras we have $a^{2} + 2^{2} = 2.9^{2}$ $a^{2} + 4 = 8.41$ $a^{2} = 4.41$ $a = \sqrt{4.41} = 2.1$

Height = 2.1 + radius= 2.1 + 2.9 = 5m

2022 Paper 2 Question 11, (3)

Set up a right angled triangle on the base of the cuboid, *EGH*. This triangle has short sides 24 *cm* and 6 *cm*. Let the long side be *c*. Using Pythagoras gives $24^2 + 6^2 = c^2$ $576 + 36 = c^2$ $c^2 = 612$ c = 24.7 cm

Set up a second right angled triangle which includes the diagonal, *ECG*.

This triangle has short sides 24.7 *cm* and 8 *cm*. Let the long side be *c*.

Using Pythagoras gives

 $24.7^{2} + 8^{2} = c^{2}$ $610.1 + 64 = c^{2}$ $c^{2} = 674.1$ $c = 26 \ cm$

mymathsguy.com

2023 Paper 1 Question 10, (4)

Consider a right angled triangle from the midpoint of AB to A to C. This triangle has a short side of 30 *cm*, and a long side of 50 *cm*. Let the other short side be *a*. Then, using Pythagoras we have,

 $a^{2} + 30^{2} = 50^{2}$ $a^{2} + 900 = 2500$ $a^{2} = 1600$ $a = 40 \ cm$

So, the width = 40 + radius= 40 + 50= 90 cm

2023 Paper 2 Question 8, (4)

The wall is perpendicular (i.e. right-angled) to the ground if the triangle *ABC* is right-angled.

$$4^2 + 7^2 = 16 + 49 = 65$$

 $8^2 = 64$

Since $65 \neq 64$, by the converse of Pythagoras Theorem, the triangle is not right-angled. Therefore, the wall is not perpendicular to the ground.