National 5 Mathematics

Pythagoras' Theorem - Solutions

Marks are indicated in brackets after each question number

2014 Paper 2 Question 6, (4)

Since Lowtown is due west of Midtown then Hightown can only be directly north of Lowtown if the triangle is right-angled.

Let $\mathrm{H}=$ Hightown, $\mathrm{L}=$ Lowtown, $\mathrm{M}=$ Midtown
Then $(L H)^{2}+(L M)^{2}=85^{2}+75^{2}=12,850$
$(H M)^{2}=110^{2}=12,100$
Since $(L H)^{2}+(L M)^{2} \neq(H M)^{2}$ the triangle is not right-angled.
Therefore, Hightown is not directly north of Lowtown.

2015 Paper 2 Question 12, (4)

Construct a right triangle from the midpoint of ML with O \& M .

Using Pythagoras gives
$1.2^{2}=0.9^{2}+h^{2}$
Solving gives $h=0.79 \mathrm{~m}$
So, depth of milk $=0.79+$ radius $=0.79+1.2=2.78 \mathrm{~m}$.

2016 Paper 1 Question 7, (4)

a) $B=(8,4,0)$ by inspection of the graph.
b) Create a right-angled triangle in the base.

3

Using Pythagoras, we have

$$
\begin{aligned}
& h=\sqrt{2^{2}+3^{2}}=\sqrt{13} \\
& (A V)^{2}=6^{2}+(\sqrt{13})^{2} \\
& \quad=49 \\
& A V=7
\end{aligned}
$$

2016 Paper 2 Question 16, (4)

Using Pythagoras gives $D E=\sqrt{4^{2}-3^{2}}=\sqrt{7}$
Using the Sine Rule on ADE gives

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin E}{e} \\
& \begin{aligned}
& \frac{\sin A}{\sqrt{7}}=\frac{\sin 90}{4} \\
& \sin A=\frac{\sqrt{7} \sin 90}{4} \\
&=0.661 \ldots \\
& A=\sin ^{-1}(0.661 \ldots) \\
&=41^{\circ}
\end{aligned}
\end{aligned}
$$

Using the Cosine Rule on ABC gives

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
& =6^{2}+10^{2}-2 \times 6 \times 10 \times \cos 41^{\circ} \\
& =45.4 \\
a & =6.7
\end{aligned}
$$

So, $B C=6.7 \mathrm{~cm}$.

2017 Paper 2 Question 7, (3)

The hypotenuse of the larger triangle is 22 cm .
The short sides have length 8 cm and 19 cm .
$8^{2}+19^{2}=425$
$22^{2}=484$
Since $425 \neq 484$ the triangle is not right angled by the converse of Pythagoras.

2018 Paper 2 Question 12, (4)

Let M be the mid-point of AB.
Construct a right-angled triangle OAM.
Using Pythagoras, $13^{2}-10^{2}=169-100=69$.
$\sqrt{69}=8.3$
Width $=$ Radius $+8.3=13+8.3=21.3 \mathrm{~cm}$.

2019 Paper 2 Question 11, (4)

The length of B to C is given by $1500-600-650=250 \mathrm{~m}$.
$650^{2}=422,500$
$600^{2}+250^{2}=422,500$

Since $600^{2}+250^{2}=650^{2}$ a triangle with short sides $600 \& 250$ and long side 650 is a right-angled triangle by the Converse of Pythagoras' Theorem.

So, $A B C$ is a right-angled triangle, meaning that B is due east of A since C is due north of B .

2019 Paper 2 Question 18, (4)

Create a right angled triangle TSB.
Since TS \& SB are the radius of the circle they have length 7.5 cm .
By Pythagoras, $T B=\sqrt{7.5^{2}+7.5^{2}}$

$$
=10.6 \mathrm{~cm}
$$

TB is the radius of the larger circle, so TD also has length 10.6 cm .
So, height $=10.6+15=25.6 \mathrm{~cm}$.

2022 Paper 2 Question 8, (4)

Set up a right angled triangle with long side $=2.9 \mathrm{~m}$ and short side $=2 \mathrm{~m}$.

By Pythagoras we have
$a^{2}+2^{2}=2.9^{2}$
$a^{2}+4=8.41$
$a^{2}=4.41$
$a=\sqrt{4.41}=2.1$

Height $=2.1+$ radius

$$
=2.1+2.9=5 \mathrm{~m}
$$

2022 Paper 2 Question 11, (3)

Set up a right angled triangle on the base of the cuboid, $E G H$.
This triangle has short sides 24 cm and 6 cm . Let the long side be c.
Using Pythagoras gives
$24^{2}+6^{2}=c^{2}$
$576+36=c^{2}$
$c^{2}=612$
$c=24.7 \mathrm{~cm}$

Set up a second right angled triangle which includes the diagonal, ECG.
This triangle has short sides 24.7 cm and 8 cm . Let the long side be c.
Using Pythagoras gives
$24.7^{2}+8^{2}=c^{2}$
$610.1+64=c^{2}$
$c^{2}=674.1$
$c=26 \mathrm{~cm}$

2023 Paper 1 Question 10, (4)

Consider a right angled triangle from the midpoint of AB to A to C .
This triangle has a short side of 30 cm , and a long side of 50 cm . Let the other short side be a. Then, using Pythagoras we have,
$a^{2}+30^{2}=50^{2}$
$a^{2}+900=2500$
$a^{2}=1600$
$a=40 \mathrm{~cm}$

So, the width $=40+$ radius

$$
\begin{aligned}
& =40+50 \\
& =90 \mathrm{~cm}
\end{aligned}
$$

2023 Paper 2 Question 8, (4)

The wall is perpendicular (i.e. right-angled) to the ground if the triangle $A B C$ is right-angled.
$4^{2}+7^{2}=16+49=65$
$8^{2}=64$
Since $65 \neq 64$, by the converse of Pythagoras Theorem, the triangle is not right-angled.
Therefore, the wall is not perpendicular to the ground.

