National 5 Mathematics

Properties of Shapes - Solutions

Marks are indicated in brackets after each question number

2014 Paper 1 Question 12, (4)

Consider the right-angled triangle PAC
$P C=15$ since it is the radius
$A C=27-15=12$ since $C B=15$

Using Pythagoras' Theorem gives
$(P C)^{2}=(P A)^{2}+(A C)^{2}$
$15^{2}=(P A)^{2}+12^{2}$
$15^{2}-12^{2}=(P A)^{2}$
$81=(P A)^{2}$
$P A=9$
So, $P Q=2 \times 9=18 \mathrm{~cm}$.

2014 Paper 2 Question 13, (5)

Area of sector MON $=\frac{50}{360} \times \pi \times 7^{2}=21.4 \mathrm{~m}^{2}$
Area of triangle MON $=\frac{1}{2} \times 7 \times 7 \times \sin 50^{\circ}=18.8 \mathrm{~m}^{2}$
Area of Chord at $\mathrm{MN}=2.6 \mathrm{~m}^{2}$

Area of circle $=\pi \times 7^{2}=153.9 \mathrm{~m}^{2}$
Area of cross-section $=153.9-2.6=151.3 \mathrm{~m}^{2}$.

2015 Paper 1 Question 3, (3)

$\mathrm{DFE}=90^{\circ}$ since triangle inscribed in a circle with one side being the diameter
So, $\mathrm{FDE}=180-90-64=26^{\circ}$.
$\mathrm{ABO}=90^{\circ}$ since tangent to the circle
So, $O B D=90-77=13^{\circ}$.

And $\mathrm{BDO}=13^{\circ}$ since isosceles triangle.
So, $\operatorname{BDF}=26+13=39^{\circ}$.

2015 Paper 2 Question 11, (4)

Using Pythagoras to calculate height gives
$20^{2}=10^{2}+h^{2}$
$400=100+h^{2}$
$300=h^{2}$
$h=\sqrt{300}=17.32 \mathrm{~cm}$
Area of triangle $=\frac{1}{2} \times 17.32 \times 20=173.2 \mathrm{~cm}^{2}$.
Area of table top $=173.2 \times 6=1,039.2 \mathrm{~cm}^{2}$.

2015 Paper 2 Question 12, (4)

Construct a right triangle from the midpoint of ML with 0 \& M

Using Pythagoras gives
$1.2^{2}=0.9^{2}+h^{2}$
Solving gives $h=0.79 \mathrm{~m}$
So, depth of milk $=0.79+$ radius $=0.79+1.2=2.78 \mathrm{~m}$

2016 Paper 1 Question 7, (1) (3)

a) $B=(8,4,0)$ by inspection of the graph.
b) Create a right-angled triangle in the base.

Using Pythagoras, we have
$h=\sqrt{2^{2}+3^{2}}=\sqrt{13}$

$$
\begin{aligned}
(A V)^{2} & =6^{2}+(\sqrt{13})^{2} \\
& =49 \\
A V & =7
\end{aligned}
$$

2016 Paper 2 Question 5, (3)

$E O A=180-143=37^{\circ}$.
So, $O A C=37^{\circ}$ since Z angle.
So, $C A B=90-37=53^{\circ}$ since tangent to circle makes 90° angle with radius.
$A C B=53^{\circ}$ since same angle as $C A B$.
So, $B=180-(53 \times 2)=74^{\circ}$.

2016 Paper 2 Question 15, (4)

Let M be the midpoint of $A B$.
$M B=4.5$.
Make a right triangle OMB giving
$6.6^{2}=(O M)^{2}+4.5^{2}$ by Pythagoras
$(O M)^{2}=6.6^{2}-4.5^{2}=23.31$
$O M=\sqrt{23.31}=4.8 \mathrm{~cm}$.

$$
\begin{aligned}
\text { Height } & =0 M+\text { radius } \\
& =4.8+6.6 \\
& =11.4 \mathrm{~cm} .
\end{aligned}
$$

2017 Paper 1 Question 9, (3)

$O B E=90^{\circ}$.
OBD $=90-58=32^{\circ}$.
$\mathrm{ODB}=32^{\circ}$ since isosceles triangle.
DOB $=180-(32 \times 2)=116^{\circ}$.
BOC $=180-116=64^{\circ}$.
$\mathrm{CAB}=180-90-64=26^{\circ}$.

2017 Paper 2 Question 3, (3)

Using the Cosine Rule gives

$$
\begin{aligned}
p^{2} & =q^{2}+r^{2}-2 q r \cos P \\
& =180^{2}+150^{2}-2 \times 180 \times 150 \times \cos 147 \\
& =170,380 \\
p & =\sqrt{170,380}=413 .
\end{aligned} \text { Length }=413 \mathrm{~m} .
$$

2017 Paper 2 Question 13, (4)

Let C be the midpoint of $A B$.
Then, $A C=24 \mathrm{~cm}$.
Let D be the midpoint of $A C$.
Then, $A D=12 \mathrm{~cm}$.

Construct a right angled triangle A, C_{1}, D.
Using Pythagoras gives
$14^{2}+12^{2}=\left(D C_{1}\right)^{2}$
$196+144=\left(D C_{1}\right)^{2}$
$D C_{1}=\sqrt{340}=7.2 \mathrm{~cm}$
Height $=(7.2 \times 2)+(14 \times 2)=42.4 \mathrm{~cm}$.

2018 Paper 1 Question 9, (4)

$360 \div 10=36$
$180-36=144$
$144 \div 2=72$
$180-72=108$
$17+108=125$
Shaded Area $=180-125=55^{\circ}$.

2019 Paper 1 Question 11, (3)

All of the angles at $O=360 \div 5=72^{\circ}$
$A O B=72^{\circ}$
$F O B=180-72=108^{\circ}$
$O F B=\frac{180-108}{2}$
$=36^{\circ}$

2019 Paper 2 Question 5, (2)

$A=(3,0,0)$

$$
B=(3,3,8)
$$

2019 Paper 2 Question 18, (4)

Create a right angled triangle TSB.
Since TS \& SB are the radius of the circle they have length 7.5 cm .
By Pythagoras, $T B=\sqrt{7.5^{2}+7.5^{2}}$

$$
=10.6 \mathrm{~cm}
$$

TB is the radius of the larger circle, so TD also has length 10.6 cm .
So, height $=10.6+15=25.6 \mathrm{~cm}$.

2022 Paper 1 Question 4, (3)

$A C O=90^{\circ}$
$C O E=180^{\circ}-68^{\circ}=112^{\circ}$
$O C E=\frac{180^{\circ}-112^{\circ}}{2}=34^{\circ}$
$A C E=90^{\circ}+34^{\circ}=124^{\circ}$

2023 Paper 2 Question 5, (2)

Angles at the centre $=360 \div 10=36^{\circ}$
Other angles in each triangle $=\frac{180-36}{2}=72^{\circ}$
Using the straight line gives $180-72-72=36^{\circ}$
Shaded area angle $=90+36=126^{\circ}$

