National 5 Mathematics

Arcs & Sectors - Solutions

Marks are indicated in brackets after each question number

2015 Paper 2 Question 10, (4)

Arc Length =
$$\frac{angle}{360} \times \pi d$$

28.4 = $\frac{64}{3} \times \pi \times 2$

 $28.4 = \frac{64}{360} x \pi x 2r$ since diameter = 2 x radius

$$\frac{28.4 \times 360}{64\pi} = 2r$$

$$r = \frac{28.4 \times 360}{128\pi}$$

$$r = 25 cm$$

2016 Paper 1 Question 3, (3)

Area =
$$\frac{45}{360} x \pi x 20^2$$

$$=\frac{1}{8} \times 400 \times 3.14$$

$$= 50 \times 3.14$$

$$=\frac{100 \times 3.14}{2}$$

$$=\frac{314}{2}$$

$$= 157 cm^2$$

2017 Paper 2 Question 14, (3)

Arc length =
$$\frac{angle}{360} x \pi x d$$

$$31.5 = \frac{AOB}{360} \times \pi \times 12.8$$

Rearranging gives

$$AOB = \frac{31.5 \, x \, 360}{12.8 \pi}$$

$$AOB = 282^{\circ}$$

2018 Paper 2 Question 2, (3)

Arc Length =
$$\frac{320}{360} x \pi x 14.8 = 41.3$$

= 41.3 cm

2018 Paper 2 Question 17, (5)

Area of Triangle =
$$\frac{1}{2}$$
(38)(55) sin 75
= 1009.39 cm²

Area of Sector =
$$\frac{75}{360} x \pi x 60$$

= 39.27 cm²

Shaded Area =
$$1009.39 - 39.27$$

= $970.12 cm^2$

2019 Paper 1 Question 4, (3)

Arc Length =
$$\frac{angle}{360} x \pi x d$$

= $\frac{240}{360} x 3.14 x 60$
= $\frac{2}{3} x 3.14 x 60$
= $40 x 3.14$
= $(40 x 3) + (40 x 0.1) + (40 x 0.04)$
= $120 + 4 + 1.6$
= $125.6 cm$

2019 Paper 2 Question 12, (3) (3)

a) Linear Scale Factor =
$$\frac{30}{50}$$

Area Scale Factor = $(\frac{30}{50})^2 = 0.36$
Area = 2,750 x 0.36 = 990 cm²

b) Area =
$$\frac{angle}{360} \times \pi r^2$$

Let the angle
$$ACB = x$$

$$2,750 = \frac{x}{360} x \pi x 50^2$$

$$2,750 = \frac{2,500\pi x}{360}$$

$$x = \frac{2,750 \times 360}{2,500\pi}$$

$$x = 126.1^{\circ}$$

2022 Paper 2 Question 10, (3)

Arc Length =
$$\frac{angle}{360} x \pi d$$

Let the angle be a

$$69.4 = \frac{a}{360} \ x \, \pi \, x \, 30$$

$$69.4 = \frac{30\pi a}{360}$$

Rearranging gives

$$a = \frac{69.4 \times 360}{30\pi}$$

$$a = 265^{\circ}$$

2023 Paper 2 Question 3, (3)

Arc Length =
$$\frac{106}{360} x \pi x 18.3$$

= 16.93 m