2018 National 5 Mathematics Paper 1

Click to jump to question:
Paper 1:1 $2 \begin{array}{llllllllllllllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$
Paper 2: $1 \begin{array}{llllllllllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

Question 1, (2)
$2 \frac{1}{3}+\frac{4}{5}=\frac{7}{3}+\frac{4}{5}=\frac{35}{15}+\frac{12}{15}=\frac{47}{15}=3 \frac{2}{15}$

Question 2, (3)

$$
\begin{aligned}
& (3 x+1)(x-1)+2\left(x^{2}-5\right) \\
& =3 x^{2}+x-3 x-1+2 x^{2}-10=5 x^{2}-2 x-11
\end{aligned}
$$

Question 3, (3)

$$
\begin{align*}
& 4 x+5 y=-3 \tag{1}\\
& 6 x-2 y=5 \tag{2}
\end{align*}
$$

Multiply (1) by 2 and multiply (2) by 5 to give

$$
\begin{align*}
& 8 x+10 y=-6 \tag{3}\\
& 30 x-10 y=25 \tag{4}\\
& (3)+(4) \text { gives } \\
& 38 x=19 \\
& x=0.5
\end{align*}
$$

Substitute $x=0.5$ into (1) to give

$$
\begin{aligned}
4 x 0.5+5 y & =-3 \\
2+5 y & =-3 \\
5 y & =-5, y=-1
\end{aligned}
$$

Question 4, (2)

$$
\begin{aligned}
\underline{u}+\underline{v} & =\left(\begin{array}{l}
1 \\
5 \\
1
\end{array}\right)+\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-4 \\
3
\end{array}\right) \\
\underline{v} & =\left(\begin{array}{r}
5 \\
-9 \\
2
\end{array}\right)
\end{aligned}
$$

Question 5, (2)

$$
\begin{aligned}
& x^{2}-11 x+24=0 \\
& (x-8)(x-3)=0 \\
& x-8=0 \text { and } x-3=0 \\
& x=8 \text { and } x=3
\end{aligned}
$$

Question 6, (2)
$a=5, b=4$

Question 7, (3) (1)

a) $A=(8,14), B=(12,20)$

$$
\text { Gradient }=\frac{20-14}{12-8}=\frac{6}{4}=\frac{3}{2}
$$

Write $y=m x+c$ using P and d to give

$$
\begin{aligned}
P & =m d+c \\
P & =\frac{3}{2} d+c
\end{aligned}
$$

Substitute $(8,14)$ to give

$$
\begin{aligned}
14 & =\frac{3}{2} \cdot 8+c \\
14 & =12+c \\
c & =2 \\
P & =\frac{3}{2} d+2
\end{aligned}
$$

b) Let $d=5$ to give

$$
P=\frac{3}{2}(5)+2
$$

$=\frac{15}{2}+2$
$=7.5+2$
$=9.5$

So, £ 9.50 .

Question 8, (2)
$f(x)=2 x^{2}+4 x+5$
$a=2, b=4, c=5$
$b^{2}-4 a c=4^{2}-4(2)(5)$
$=16-40$
$=-24$
So, no real roots.

Question 9, (2)

$$
360 \div 10=36
$$

$$
180-36=144
$$

$$
144 \div 2=72
$$

$$
180-72=108
$$

$$
17+108=125
$$

Shaded Area $=180-125=55^{\circ}$.

Question 10, (3)

$$
\begin{aligned}
z^{2} & =x^{2}+y^{2}-2 x y \cos Z \\
& =8^{2}+10^{2}-2(8)(10)\left(\frac{1}{8}\right) \\
& =164-20 \\
& =144 \\
z & =12
\end{aligned}
$$

So, $X Y=12 \mathrm{~cm}$.

Question 11, (2)

$\frac{9}{\sqrt{6}}=\frac{9}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}=\frac{9 \sqrt{6}}{6}=\frac{3 \sqrt{6}}{2}$

Question 12, (1)

Sketch the graph of $y=\cos x$
Mark on a horizontal line through 0.5
The line passes through the graph where $x=60$
From the symmetry of the graph, $\cos 240^{\circ}=-0.5 \quad$ (or use a CAST diagram)

Question 13, (2)
$B=(4,8,5), C=(6,8,0)$

Question 14, (3)
$y=g \sqrt{x}+h$
$g \sqrt{x}=y-h$
$\sqrt{x}=\frac{y-h}{g}$
$x=\left(\frac{y-h}{g}\right)^{2}$

Question 15, (2)
$\left(\frac{2}{3} p^{4}\right)^{2}=\frac{4}{9} p^{8}$

Question 16, (3)

$y=(x-6)(x+4)$
For roots, let $y=0$ to give
$0=(x-6)(x+4)$
$x=-4, x=6$
For y - intercept, let $x=0$ to give

$$
\begin{aligned}
y & =(0-6)(0+4) \\
& =(-6)(4) \\
& =-24
\end{aligned}
$$

Question 17, (3)

Volume $=\frac{1}{3} A h$
$138=\frac{1}{3} \times 6^{2} \times h$
$138=12 h$
$h=\frac{138}{12}=\frac{69}{6}=11.5$
$h=11.5 \mathrm{~cm}$.

Question 18, (2)

$\sin x \cos x \tan x$
Substitute $\tan x=\frac{\sin x}{\cos x}$ to give
$\sin x \cos x \frac{\sin x}{\cos x}$
$=\sin x \sin x$
$=\sin ^{2} x$

Question 19, (2) (1) (4)

a) i) $x^{2}-6 x-81=(x-3)^{2}-9-81$

$$
=(x-3)^{2}-90
$$

ii) $x=3$
b) $x^{2}-6 x-81=0$
$(x-3)^{2}-90=0$

$$
\begin{aligned}
(x-3)^{2} & =90 \\
x-3 & = \pm \sqrt{90} \\
x & =3 \pm 3 \sqrt{10}
\end{aligned}
$$

2018 National 5 Mathematics Paper 2

Click to jump to question:

```
1 2 3 4 5 5 6 7
```

Question 1, (3)
$125,000 \times 0.98^{3}=117,649$
117, 649 tonnes.

Question 2, (3)

$$
\begin{aligned}
\text { Arc Length } & =\frac{320}{360} \times \pi \times 14.8=41.3 \\
& =41.3 \mathrm{~cm}
\end{aligned}
$$

Question 3, (2)

$$
\begin{aligned}
|\underline{r}| & =\sqrt{24^{2}+(-12)^{2}+8^{2}} \\
& =\sqrt{784} \\
& =28
\end{aligned}
$$

Question 4, (3)
$3 x<6(x-1)-12$
$3 x<6 x-6-12$
$3 x<6 x-18$
$18<3 x$
$6<x$
$x>6$

Question 5, (4) (2)

a) Mean $=\bar{x}=\frac{756}{6}=126$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
120	-6	36
126	0	0
125	-1	1
131	5	25
130	4	16
124	-2	4
		$\sum(x-\bar{x})^{2}=82$

Standard Deviation $=\sqrt{\frac{82}{5}}=4.0$
b) Since the mean has decreased fewer people visited on a Sunday on average.

Since the standard deviation has increased the number of people visiting stalls on Sunday is less consistent.

Question 6, (2)

$f(x)=5+4 x$
$f(a)=5+4 a=73$
Dropping $f(a)$ gives

$$
\begin{aligned}
5+4 a & =73 \\
4 a & =73-5 \\
4 a & =68 \\
a & =\frac{68}{4}=17
\end{aligned}
$$

Question 7, (3)

$$
\begin{aligned}
v & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \times \pi \times 3.2^{2} \\
& =137.2582 \\
& =140 \mathrm{~cm}^{3}
\end{aligned}
$$

Question 8, (3)

$7 \sin x+2=3$

$$
\sin x=\frac{1}{7}
$$

$x=\sin ^{-1}\left(\frac{1}{7}\right)=8.2^{\circ}$
From CAST diagram
$x=180-8.2=171.8^{\circ}$

Question 9, (3)

Using the Sine Rule gives

$$
\begin{aligned}
& \frac{20}{\sin 37}=\frac{D C}{\sin 105} \\
& \begin{aligned}
& D C=\frac{20 \sin 105}{\sin 37} \\
& \quad=32 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$

Question 10, (2)

$$
\begin{aligned}
\overrightarrow{B C} & =\overrightarrow{B A}+\overrightarrow{A E}+\overrightarrow{E D}+\overrightarrow{D C} \\
& =-\underline{u}-\underline{w}+2 \underline{u}+\frac{1}{2} \underline{w} \\
& =\underline{u}-\frac{1}{2} \underline{w}
\end{aligned}
$$

Question 11, (3)

$$
\begin{aligned}
& 85 \%=9.3 \times 10^{11} \\
& \begin{aligned}
1 \%= & \left(9.3 \times 10^{11}\right) \div 85 \\
100 \% & =\left[\left(9.3 \times 10^{11}\right) \div 85\right] \times 100 \\
& =1,094,117,647,058 \\
& =1.09 \times 10^{2}
\end{aligned}
\end{aligned}
$$

Question 12, (4)

Let M be the mid-point of $A B$.
Construct a right-angled triangle OAM.
Using Pythagoras, $13^{2}-10^{2}=169-100=69$
$\sqrt{69}=8.3$
Width $=$ Radius $+8.3=13+8.3=21.3 \mathrm{~cm}$.

Question 13, (4)

$$
\begin{aligned}
\cos T & =\frac{5.6^{2}+10.3^{2}-7.2^{2}}{2 \times 5.6 \times 10.3} \\
& =\frac{85.61}{115.36} \\
& =0.742 . . \\
T= & \cos ^{-1}(0.742 \ldots) \\
= & 42^{\circ}
\end{aligned}
$$

Bearing $=240+42$

$$
=282^{\circ}
$$

Question 14, (2)

$2 x-5 y=20$
For y - intercept, let $x=0$
$0-5 y=20$
$-5 y=20$
$y=-4$
$(0,-4)$

Question 15, (3)
$\frac{n}{n^{2}-4} \div \frac{3}{n-2}$
$=\frac{n}{n^{2}-4} \times \frac{n-2}{3}$
$=\frac{n(n-2)}{3\left(n^{2}-4\right)}$
$=\frac{n(n-2)}{3(n-2)(n-2)}$
$=\frac{n}{3(n-2)}$

Question 16, (4)

Construct a right-angled triangle in the base of the cuboid.
Sides of this triangle are 40 cm and 40 cm .

Using Pythagoras, long side of this triangle $=\sqrt{40^{2}+40^{2}}$

$$
=56.57
$$

Construct a right-angled triangle with corners P \& M.
Sides of this triangle are 70 cm and 56.57 cm .

Using Pythagoras gives

$$
\begin{aligned}
P M & =\sqrt{70^{2}+56.57^{2}} \\
& =90
\end{aligned}
$$

So, $P M=90 \mathrm{~cm}$. Since the umbrella is 85 cm , it will fit.

Question 17, (5)

$$
\begin{aligned}
\text { Area of Triangle } & =\frac{1}{2}(38)(55) \sin 75 \\
& =1009.39 \mathrm{~cm}^{2} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of Sector } & =\frac{75}{360} \times \pi \times 60 \\
& =39.27 \mathrm{~cm}^{2}
\end{aligned}
$$

Shaded Area $=1009.39-39.27$

$$
=970.12 \mathrm{~cm}^{2} .
$$

Question 18, (3) (2)

a) Linear Scale Factor $=\frac{24}{16}=1.5$

Volume Scale Factor $=1.5^{3}=3.375$
$\frac{1125}{576}=1.96$
Since $1.96 \neq 3.375$ the two cartons are not mathematically similar.
b) Volume Scale Factor $=\frac{1500}{576}=2.6$

$$
\begin{aligned}
& 2.6=\left(\frac{d}{16}\right)^{3} \\
& 2.6=\frac{d^{3}}{16^{3}} \\
& 2.6 \times 16^{3}=d^{3} \\
& d^{3}=10,649.6 \\
& d=\sqrt[3]{10,649.6} \\
& d=22 \mathrm{~cm}
\end{aligned}
$$

