2015 National 5 Mathematics Paper 1

Click to jump to question:

Paper 2: $1 \begin{array}{llllllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$

Question 1, (2)
$6 \frac{1}{5}-2 \frac{1}{3}=\frac{31}{5}-\frac{7}{3}$

$$
\begin{aligned}
& =\frac{93}{15}-\frac{35}{15} \\
& =\frac{93-35}{15} \\
& =\frac{58}{15}
\end{aligned}
$$

Question 2, (3)

$$
\begin{aligned}
11-2(1+3 x) & <39 \\
11-2-6 x & <39 \\
-6 x & <30 \\
x & >\frac{30}{-6} \\
x & >-5
\end{aligned}
$$

Question 3, (3)

$\mathrm{DFE}=90^{\circ}$ since triangle inscribed in a circle with one side being the diameter So, $\mathrm{FDE}=180-90-64=26^{\circ}$.
$A B O=90^{\circ}$ since tangent to the circle.
So, $\mathrm{OBD}=90-77=13^{\circ}$.
And $\mathrm{BDO}=13^{\circ}$ since isosceles triangle.

So, $\operatorname{BDF}=26+13=39^{\circ}$.

Question 4, (3)

$(x-4)\left(x^{2}+x-2\right)$
$=x^{3}+x^{2}-2 x-4 x^{2}-4 x+8$
$=x^{3}-3 x^{2}-6 x+8$

Question 5, (3)

$\bar{x}=\frac{1+2+2+2+8}{5}=3$

x	$x-\bar{x}$	$(x-\bar{x})^{2}$
	-2	4
1	-1	1
2	-1	1
2	-1	1
2	5	25
8		$\sum(x-\bar{x})^{2}=32$

Standard Deviation $=\sqrt{\frac{32}{4}}=\sqrt{8}$
So, $\sqrt{8}=\sqrt{a}$
$a=8$

Question 6, (2)
Since the amplitude is $4, a=4$.
Since there are 3 copies of the Sine graph is $0 \leq x \leq 360^{\circ}, b=3$.

Question 7, (1) (1) (1)

a) i) $a=-2$
ii) $b=-4$
b) $x=-4$

Question 8, (3)

Let $A=(-2,5), B=(3,15)$
$m_{A B}=\frac{15-5}{3-(-2)}=2$

Using $y-b=m(x-a)$ with $(3,15)$ we have

$$
\begin{aligned}
y-15 & =2(x-3) \\
y-15 & =2 x-6 \\
y & =2 x+9
\end{aligned}
$$

Question 9, (2)

$\cos 90^{\circ}=0$.
$\cos 100^{\circ}<0$ from inspection of the graph.
$\cos 300^{\circ}>0$ from inspection of the graph.
So, $\cos 100^{\circ}<\cos 90^{\circ}<\cos 300^{\circ}$

Question 10, (3) (2)
a) $\left\{\begin{array}{llllllllll}12 & 16 & 17 & 18 & 18 & 21 & 22 & 26 & 27 & 27\end{array}\right\}$

Median $=Q_{2}=\frac{18+21}{2}=19.5$
$Q_{1}=17, Q_{3}=26$
Semi-interquartile Range $=\frac{26-17}{2}=4.5$.
b) The median has increased and the semi-interquartile range has decreased. This means that on average the couples have scored better in the second round but because the semi-interquartile range has decreased the scores are less consistent than they were in the first round.

Question 11, (3)

$3 x+2 y=17$
$2 x+5 y=4$

Multiply (1) by 2 and (2) by 3 to give
$6 x+4 y=34$
$6 x+15 y=12$
(4) - (3) gives
$11 y=-22$

$$
y=-2
$$

Substituting $y=-2$ into (2) gives

$$
\begin{aligned}
& 2 x+5 \cdot(-2)=4 \\
& 2 x-10=4 \\
& 2 x=14 \\
& x=7
\end{aligned}
$$

Question 12, (4)
$\frac{x^{2}-4 x}{x^{2}+x-20}$
$=\frac{x(x-4)}{(x+5)(x-4)}$
$=\frac{x}{x+5}$

Question 13, (3)
$\frac{4}{\sqrt{8}}=\frac{4}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}}$
$=\frac{4 \sqrt{8}}{8}=\frac{\sqrt{8}}{2}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$

Question 14, (2)

$$
8^{\frac{5}{3}}=\left(8^{\frac{1}{3}}\right)^{5}=(\sqrt[3]{8})^{5}=2^{5}=32
$$

2015 National 5 Mathematics Paper 2

Click to jump to question:

```
1
```

Question 1, (3)
Value after two years $=£ 240,000 \times 1.028^{2}=£ 253,628.16$.

Question 2, (2)
$f(x)=3 x+2$
$f(a)=3 a+2$
Since $f(a)=23$ we have
$3 a+2=23$

$$
\begin{aligned}
3 a & =21 \\
a & =7
\end{aligned}
$$

Question 3, (3)

Using the Cosine Rule gives
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$(A B)^{2}=1.35^{2}+1.2^{2}-2 \times 1.2 \times 1.35 \times \cos 35$
$(A B)^{2}=0.613 \ldots$
$A B=0.78$
So, $A B=0.78 \mathrm{~km}$.

Question 4, (2)

$$
\begin{aligned}
|\underline{u}| & =\sqrt{6^{2}+(-13)^{2}+18^{2}} \\
& =\sqrt{529}=23
\end{aligned}
$$

Question 5, (2)
$\underline{p}=\binom{-5}{3}, \underline{q}=\binom{4}{-5}$
$\underline{p}+\underline{q}=\binom{-1}{-2}$

Question 6, (3) (2)

a) Volume of Sphere $=\frac{4}{3} \pi r^{3}$

Volume of the Earth $=\frac{4}{3} \pi x 6,400^{3}$

$$
\begin{aligned}
& =1,098,066,219,443 \\
& =1,100,000,000,000 \\
& =1.1 \times 10^{12} .
\end{aligned}
$$

b) $\frac{1.1 \times 10^{12}}{2.2 \times 10^{10}}=0.5 \times 10^{2}=0.5 \times 100=50$.

So, 50 times.

Question 7, (3)
$\frac{5 t}{s} \div \frac{t}{2 s^{2}}$
$=\frac{5 t}{s} x \frac{2 s^{2}}{t}$
$=\frac{10 t s^{2}}{t s}$
$=10 \mathrm{~s}$

Question 8, (3)

Since the price has been reduced by 15\% James paid 85\% of the original price.
$£ 297.50=85 \%$
$1 \%=\frac{£ 297.50}{85}=£ 3.50$
$100 \%=£ 3.50 \times 100=£ 350$

Question 9, (4)

Linear Scale Factor $=\frac{30}{24}=1.25$
Area Scale Factor $=(1.25)^{2}=1.5625$
Area of $P S R=1.5625 \times 400=625 \mathrm{~cm}^{2}$
Area of PSTQ $=625-400=225 \mathrm{~cm}^{2}$.

Question 10, (4)

Arc Length $=\frac{\text { angle }}{360} \times \pi d$

$$
28.4=\frac{64}{360} \times \pi \times 2 r \quad \text { since diameter }=2 \mathrm{x} \text { radius }
$$

$$
\frac{28.4 \times 360}{64 \pi}=2 r
$$

$$
r=\frac{28.4 \times 360}{128 \pi}
$$

$$
r=25 \mathrm{~cm} .
$$

Question 11, (4)

Using Pythagoras to calculate height gives

$$
\begin{aligned}
20^{2} & =10^{2}+h^{2} \\
400 & =100+h^{2} \\
300 & =h^{2} \\
h & =\sqrt{300}=17.32 \mathrm{~cm}
\end{aligned}
$$

Area of triangle $=\frac{1}{2} \times 17.32 \times 20=173.2 \mathrm{~cm}^{2}$.

Area of table top $=173.2 \times 6=1,039.2 \mathrm{~cm}^{2}$.

Question 12, (4)

Construct a right triangle from the midpoint of ML with $\mathrm{O} \& \mathrm{M}$.

Using Pythagoras gives
$1.2^{2}=0.9^{2}+h^{2}$
Solving gives $h=0.79 \mathrm{~m}$
So, depth of milk $=0.79+$ radius $=0.79+1.2=2.78 \mathrm{~m}$.

Question 13, (4)

$P Q R=180-128=56^{\circ}$
$Q R P=180-(52+72)=56^{\circ}$

Using the Sine Rule gives
$\frac{q}{\sin Q}=\frac{r}{\sin R}$
$\frac{q}{\sin 52^{\circ}}=\frac{25}{\sin 56^{\circ}}$
$q=\frac{25 \sin 52^{\circ}}{\sin 56^{\circ}}=23.67$

So, distance is 23.67 km .

Question 14, (1) (2) (4)
a) i) Length $=13+2 x$
ii) Width $=9+2 x$

Area of card $=(13+2 x)(9+2 x)=117+44 x+4 x^{2}$

But since the area $=270$ we have

$$
\begin{aligned}
270 & =117+44 x+4 x^{2} \\
0 & =4 x^{2}+44 x-153
\end{aligned}
$$

b) $4 x^{2}+44 x-153=0$

Using the quadratic formula with $a=4, b=44, c=-153$ gives
$x=\frac{-44 \pm \sqrt{44^{2}-4 \times 4 \times(-153)}}{2 \times 4}$
$x=\frac{-44 \pm \sqrt{4384}}{8}$
$x=2.7, x=-13.8$

Since x is a length it cannot be negative so $x=2.7$

So, the width of the border is 2.7 cm .

